## Polynomial Equations and Fields Sample Solution- University of Toronto

- (1) Suppose that F is a subfield of  $\mathbb{C}$ ,  $f(x) \in F[x]$  is irreducible over F and G is the Galois group of f(x) over F.
  - a) Prove that if  $|G| > \deg f(x)$ , then G is nonabelian.
  - b) Prove or disprove: If  $|G| = \deg f(x)$ , then G is abelian.
- (2) Suppose that  $F \leq E \leq \mathbb{C}$ , [E:F] = 100, E is Galois over F and  $G = \operatorname{Gal}(E/F)$  contains a subgroup H such that |H| = 25. Use Galois theory to prove that  $H \triangleleft G$ .
- (3) Let  $F \leq \mathbb{C}$ . Suppose that  $f(x) \in F[x]$  is monic, irreducible over F and deg f(x) = 6. Let E be the splitting field of f(x) over F and let  $G = \operatorname{Gal}(E/F)$ . Assume that [E:F] = 12 and assume that there exists  $\sigma \in G$  such that  $|\sigma| = 3$ . Let  $H = \langle \sigma \rangle$  and  $K = E^H$ .
  - a) Prove that if  $\alpha \in E$  and  $f(\alpha) = 0$ , then  $E = K(\alpha)$ .
  - b) Determine how f(x) factors as a product of irreducible polynomals in K[x]. What is the number of irreducible factors of f(x) in K[x] and what are their degrees? (*Hint*: How are  $m_{\alpha,K}(x)$  and H related?)



## Polynomial Equations and Fields Sample Solution- University of Toronto

```
By the Galois theory for finite Galois groups

We have |G| = [E:F] = 100 cont

|H| = 25 \implies [G:H] = 4 enough

Now by the Sylow theoretis if r be the number of Sylow B-subgroup charder 25 then:

r \ge 1 \pmod{5} enough r \ge 1

r \ge 1 \pmod{5} enough r \ge 1

Sylow r \ge 1

Sylow
```

## Polynomial Equations and Fields Sample Solution- University of Toronto